Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(7-8): 2169-2208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929188

RESUMO

Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.


Assuntos
Celulose , Rios , Celulose/metabolismo , Bactérias/metabolismo , Biotecnologia , Esgotos
2.
Appl Microbiol Biotechnol ; 106(17): 5433-5448, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35879434

RESUMO

Propionic acid bacteria (PAB) are a source of valuable metabolites, including propionic acid and vitamin B12. Propionic acid, a food preservative, is synthesized from petroleum refining by-products, giving rise to ecological concerns. Due to changing food trends, the demand for vitamin B12 has been expected to increase in the future. Therefore, it is necessary to look for new, alternative methods of obtaining these compounds. This study was conducted with an aim of optimizing the production of PAB metabolites using only residues (apple pomace, waste glycerine, and potato wastewater), without any enzymatic or chemical pretreatment and enrichment. Media consisting of one, two, or three industrial side-streams were used for the production of PAB metabolites. The highest production of propionic acid was observed in the medium containing all three residues (8.15 g/L, yield: 0.48 g/g). In the same medium, the highest production of acetic acid was found - 2.31 g/L (0.13 g/g). The presence of waste glycerine in the media had a positive effect on the efficiency of propionic acid production and P/A ratio. The concentration of vitamin B12 obtained in the wet biomass of Propionibacterium freudenreichii DSM 20271 ranged from 90 to 290 µg/100 g. The highest production of cobalamin was achieved in potato wastewater and apple pomace, which may be a source of the precursors of vitamin B12 - cobalt and riboflavin. The results obtained show both propionic acid and vitamin B12 can be produced in a more sustainable manner through the fermentation of residues which are often not properly managed. KEY POINTS: • The tested strain has been showed metabolic activity in the analyzed industrial side-streams (apple pomace, waste glycerine, potato wastewater). • All the side-streams were relevant for the production of propinic acid. • The addition of waste glycerine increases the propionic acid production efficiency and P/A ratio. • B12 was produced the most in the media containing potato wastewater and apple pomace as dominant ingredients.


Assuntos
Malus , Solanum tuberosum , Ácido Acético , Fermentação , Glicerol , Propionatos , Propionibacterium , Vitamina B 12 , Águas Residuárias
3.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631843

RESUMO

Every application of a substance results from the macroscopic property of the substance that is related to the substance's microscopic structure. For example, the forged park gate in your city was produced thanks to the malleability and ductility of metals, which are related to the ability of shifting of layers of metal cations, while fire extinguishing powders use the high boiling point of compounds related to their regular ionic and covalent structures. This also applies to polymers. The purpose of this review is to summarise and present information on selected food-related biopolymers, with special attention on their respective structures, related properties, and resultant applications. Moreover, this paper also highlights how the treatment method used affects the structure, properties, and, hence, applications of some polysaccharides. Despite a strong focus on food-related biopolymers, this review is addressed to a broad community of both material engineers and food researchers.

4.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209563

RESUMO

Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner.


Assuntos
Malus/química , Extratos Vegetais/química , Propionatos/metabolismo , Propionibacterium freudenreichii/crescimento & desenvolvimento , Solanum tuberosum/química , Águas Residuárias , Meios de Cultura/química , Águas Residuárias/química , Águas Residuárias/microbiologia
5.
3 Biotech ; 11(2): 60, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33489679

RESUMO

Propionic acid and its salts are widely used as food and feed preservative. Currently, these compounds are chemically produced, which is more profitable compared to biotechnological production using bacteria of the Propionibacterium genus. Appropriate steps can enable reducing the production costs; for example, cheap industrial byproducts can be used as culture media. One such cost-effective raw material is apple pomace, a low-value byproduct from the food industry. It contains sugars such as glucose and fructose which can serve as potential carbon sources for microorganisms. This paper discusses the possibility of using apple pomace in the production of propionic acid and presents an economic analysis of the production process. The tested strain produced 8.01 g/L of propionic acid (yield 0.40 g/g) and 2.29 g/L of acetic acid (yield 0.11 g/g) from apple pomace extract. The economic analysis showed that the production of 1 kg of propionic acid (considering only waste) from 1000 kg of apple pomace would cost approximately 1.25 USD. The manufacturing cost (consumables, including feedstock, labor, and utilities) would be approximately 2.35 USD/kg, and the total cost including taxes would be approximately 3.05 USD/kg. From the economic point of view, it is necessary to improve the production of propionic acid from apple pomace, to increase the yield of fermentation and thus decrease the total production costs. This can be achieved, for example, using industrial byproducts as nitrogen and vitamin sources, instead of high-cost substrates such as yeast extract or peptone. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02582-x.

6.
Biomolecules ; 10(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102319

RESUMO

The genome of Propionibacterium freudenreichii ssp. freudenreichii T82, which has a chromosome containing 2,585,340 nucleotides with 67.3% GC content (guanine-cytosine content), is described in this paper. The total number of genes is 2308, of which 2260 are protein-coding genes and 48 are RNA genes. According to the genome analysis and the obtained results, the T82 strain can produce various compounds such as propionic acid, trehalose, glycogen, and B group vitamins (e.g., B6, B9, and B12). From protein-coding sequences (CDSs), genes related to stress adaptation, biosynthesis, metabolism, transport, secretion, and defense machinery were detected. In the genome of the T82 strain, sequences corresponding to the CRISPR loci (Clustered Regularly Interspaced Short Palindromic Repeats), antibiotic resistance, and restriction-modification system were found.


Assuntos
Propionibacterium/genética , Propionibacterium/metabolismo , Adaptação Fisiológica/genética , Composição de Bases/genética , Sequência de Bases/genética , Genoma/genética , Genômica/métodos , Análise de Sequência de DNA/métodos
7.
Prep Biochem Biotechnol ; 49(10): 974-986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31403887

RESUMO

Sequential optimization of propionate production using apple pomace was studied. All experiments were performed in a static flask in anaerobic conditions. Effect of apple pomace as nitrogen source against conventional N sources (yeast extract, peptone) was studied. The double increase was observed in propionic acid production while using yeast extract and peptone (0.29 ± 0.01 g/g), as against the use of only apple pomace extract (APE) (0.14 ± 0.01 g/g). Intensification of propionic acid fermentation was also achieved by increasing the pH control frequency of the culture medium from 24-(0.29 ± 0.01 g/g) to 12-hour intervals (30 °C) (0.30 ± 0.02 g/g) and by increasing the temperature of the culture from 30 to 37 °C (12-hour intervals of pH control) (0.32 ± 0.01 g/g). An important factor in improving the parameters of fermentation was the addition of biotin to the medium. The 0.2 mg/L dose of biotin allowed to attain 7.66 g/L propionate with a yield of 0.38 ± 0.03 g/g (12-hour intervals of pH control, 37 °C).


Assuntos
Malus/química , Extratos Vegetais/metabolismo , Propionatos/metabolismo , Propionibacterium freudenreichii/metabolismo , Biomassa , Meios de Cultura , Fermentação , Concentração de Íons de Hidrogênio , Temperatura
8.
Antonie Van Leeuwenhoek ; 111(6): 921-932, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29178013

RESUMO

The purpose of this study was to determine the potential for biosynthesis of propionic acid and vitamin B12 by Propionibacterium freudenreichii T82 in a medium containing various sources of carbon (glucose, fructose, and saccharose). These sugars are present in apple pomaces, which are the waste from the production of apple juice. Using statistical analysis design of experiments (DoE), the results allowed us to determine which sugars (carbon sources) exert the most beneficial influence on the biosynthesis of propionic acid and cobalamin. The highest production of propionic acid by the tested bacterial strain was obtained in a medium in which glucose accounted for at least 50% of the available carbon sources. Depending on the culture medium, the concentration of this metabolite ranged from 23 to 40 g/L. P. freudenreichii T82 produced the smallest amount of acid in medium in which the dominant nutrient source was saccharose. The results obtained indicated an inverse relationship between the amount of acid produced by the bacteria and vitamin B12 biosynthesis. Because of the high efficiency of propionic acid biosynthesis by P. freudenreichii T82, the prospect of using this strain to obtain propionate with the simultaneous disposal of waste materials (such as apple pomaces) which contain glucose and/or fructose is very promising.


Assuntos
Propionatos/metabolismo , Propionibacterium freudenreichii/metabolismo , Vitamina B 12/metabolismo , Acetatos/metabolismo
9.
Appl Microbiol Biotechnol ; 102(2): 515-538, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29167919

RESUMO

Bacteria from the Propionibacterium genus consists of two principal groups: cutaneous and classical. Cutaneous Propionibacterium are considered primary pathogens to humans, whereas classical Propionibacterium are widely used in the food and pharmaceutical industries. Bacteria from the Propionibacterium genus are capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of the bacteria from the Propionibacterium genus constitutes sources of vitamins from the B group, including B12, trehalose, and numerous bacteriocins. These bacteria are also capable of synthesizing organic acids such as propionic acid and acetic acid. Because of GRAS status and their health-promoting characteristics, bacteria from the Propionibacterium genus and their metabolites (propionic acid, vitamin B12, and trehalose) are commonly used in the cosmetic, pharmaceutical, food, and other industries. They are also used as additives in fodders for livestock. In this review, we present the major species of Propionibacterium and their properties and provide an overview of their functions and applications. This review also presents current literature concerned with the possibilities of using Propionibacterium spp. to obtain valuable metabolites. It also presents the biosynthetic pathways as well as the impact of the genetic and environmental factors on the efficiency of their production.


Assuntos
Propionatos/metabolismo , Propionibacterium/metabolismo , Vitamina B 12/biossíntese , Bacteriocinas/biossíntese , Biomassa , Vias Biossintéticas , Fermentação , Microbiologia Industrial , Trealose/metabolismo
10.
Electron. j. biotechnol ; 27: 44-48, May. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-1010289

RESUMO

Background: Depletion of petroleum resources has enforced the search for alternative sources of renewable energy. Introduction of biofuels into the market was expected to become a solution to this disadvantageous situation. Attempts to cover fuel demand have, however, caused another severe problem­the waste glycerol generated during biodiesel production at a concentration of approximately 10% w/w. This, in turn, prompted a global search for effective methods of valorization of the waste fraction of glycerol. Results: Utilization of the waste fraction at 48 h with an initial glycerol concentration of 30 g·L-1 and proceeding with 62% efficiency enabled the production of 9 g·L-1 dihydroxyacetone at 50% substrate consumption. The re-use of the immobilized biocatalyst resulted in a similar concentration of dihydroxyacetone (8.7 g·L-1) in two-fold shorter time, with an efficiency of 85% and lower substrate consumption (35%). Conclusions: The method proposed in this work is based on the conversion of waste glycerol to dihydroxyacetone in a reaction catalyzed by immobilized Gluconobacter oxydans cell extract with glycerol dehydrogenase activity, and it could be an effective way to convert waste glycerol into a valuable product.


Assuntos
Células Imobilizadas/metabolismo , Di-Hidroxiacetona/metabolismo , Glicerol/metabolismo , Resíduos , Extratos Celulares , Células Imobilizadas/química , Gluconobacter oxydans , Biocombustíveis , Reciclagem , Energia Renovável , Glicerol/química
11.
Food Chem ; 202: 341-8, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26920303

RESUMO

Commercially available Polish biscuits were stored for 10months under different storage conditions i.e. in temperatures of 5°C and 20°C. The chemical quality alteration caused by chemical reactions occurring within biscuits were studied in terms of change of composition of fat extracted from studied samples in one-month intervals. Correlation of data from standard methods e.g. gas chromatography or classic titration with FT-IR spectroscopy, was followed by calculation of four statistical models that accurately predicted peroxide value, oxidative stability, polar fraction content and unsaturated trans fatty acid content in any samples. On the basis of data obtained, scheme of chemical reactions involved in oxidation process was suggested. A critical time of storage was proposed as an indicator of the period of the highest rate of chemical changes. Among factors considered to influence oxidative stability, the following had the greatest impact: initial water content, initial fat content, and time of storage.


Assuntos
Ácidos Graxos/análise , Análise de Alimentos , Armazenamento de Alimentos , Cromatografia Gasosa , Ácidos Graxos/química , Oxirredução , Peróxidos/análise , Polônia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...